Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный медицинский университет» Министерства здравоохранения Российской Федерации

Отделение довузовского образования

«УТВЕРЖДАЮ»

И.о. проректора

Marifees R. W. N.

2025 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА «ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ХИМИИ»

Форма обучения:

дистанционная с вебинарами

Факультет:

отделение довузовского образования

Курс:

учащиеся одиннадцатого медицинского

класса

МБОУ

«Лицей

№2»

Бугульминского муниципального района

Республики Татарстан

Семестр:

октябрь-май

Самостоятельная работа

200 час.

Контрольная

работа, 4 вебинара

вебинар

В развитии современных областей медицины важная роль отводится химии, изучающей биологически значимые вещества. Связь между медициной и химией устанавливалась на протяжении многовековой истории развития естествознания. Глубокое взаимопроникновение этих наук приводит к появлению новых научных направлений, изучающих молекулярную природу отдельных физиологических процессов, молекулярные основы патогенеза болезней, молекулярные аспекты фармакологии и т.д.

В соответствии с Федеральным государственным образовательным стандартом основного общего образования учащиеся должны овладеть такими познавательными учебными действиями, как умение формулировать проблему и гипотезу, ставить цели и задачи, строить планы достижения целей и решения поставленных задач, проводить эксперимент и на его основе делать выводы и умозаключения, представлять их и отстаивать свою точку зрения. Кроме этого, учащиеся должны овладеть приемами, связанными с определением понятий: ограничивать их, описывать, характеризовать и сравнивать. Следовательно, при изучении химии в основной школе учащиеся должны овладеть учебными действиями, позволяющими им достичь личностных и предметных результатов.

В предметах естественно-математического цикла ведущую роль играет познавательная деятельность и соответствующие ей познавательные учебные действия. В связи с этим основными целями обучения химии в основной школе являются:

- 1) формирование у обучающихся умения видеть и понимать ценность образования, значимость химического знания для каждого человека независимо от его профессиональной деятельности; умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- 2) формирование у обучающихся целостного представления о мире и роли химии в создании современной естественно-научной картины мира; умения объяснять объекты и процессы окружающей действительности природной, социальной, культурной, технической среды, используя для этого химические знания;
- 3) приобретение обучающимися опыта разнообразной деятельности, познания и самопознания; ключевых навыков (ключевых компетентностей), имеющих универсальное значение для различных видов деятельности: решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, сотрудничества, безопасного обращения с веществами в повседневной жизни.

Данная программа предназначена для учащихся десятого и одиннадцатого медицинских классов МБОУ «Лицей №2» Бугульминского муниципального района Республики Татарстан

и представляет собой программу для подготовки абитуриентов к Единому государственному экзамену по химии.

ПРОГРАММА «ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ХИМИИ» ДЛЯ 11-ГО КЛАССА

Задачами изучения учебного предмета «Химия» в 11 классе являются:

- учебные: формирование системы химических знаний как компонента естественнонаучной картины мира;
- развивающие: развитие личности обучающихся, их интеллектуальное и нравственное совершенствование, формирование у них гуманистических отношений и экологически целесообразного поведения в быту и в трудовой деятельности;
- воспитательные: формирование умений безопасного обращения с веществами, используемыми в повседневной жизни; выработка понимания общественной потребности в развитии химии, а также формирование отношения к химии как к возможной области будущей практической деятельности.

Программа для 11-го класса предполагает самостоятельное изучение материала программы и включает в себя 4 контрольные работы. После выполнения слушателями контрольной работы, преподаватель университета проверяет её и затем проводит вебинар, разбирая задания работы или объясняя непонятые школьником вопросы данной темы.

Программа по химии для самостоятельной работы в 11-м классе

Теоретические основы химии Химический элемент. Атом. Ядро атома, изотопы. Электронная оболочка. Энергетические уровни, подуровни. Атомные орбитали, s-, p-, d- элементы. Особенности распределения электронов по орбиталям в атомах элементов первых четырёх периодов. Электронная конфигурация атомов. Периодический закон и Периодическая система химических элементов Д.И. Менделеева. Связь периодического закона и Периодической системы химических элементов Д.И. Менделеева современной теорией строения атомов. Закономерности изменения свойств химических элементов и образуемых ими простых и сложных веществ по группам и периодам. Значение периодического закона в развитии науки. Строение вещества. Химическая связь. Виды химической связи (ковалентная неполярная и полярная, ионная, металлическая). Механизмы образования (обменный ковалентной химической связи и донорно-акцепторный). Водородная связь. Валентность. Электроотрицательность. Степень окисления. Ионы:

молекулярного немолекулярного строения. Вещества И постоянства состава вещества. Типы кристаллических решёток. Зависимость свойства веществ от типа кристаллической решётки. Понятие о дисперсных системах. Истинные и коллоидные растворы. Массовая доля вещества в неорганических соединений. Классификация Номенклатура неорганических веществ. Генетическая связь неорганических веществ, принадлежащих к различным классам. Химическая реакция. Классификация химических реакций в неорганической и органической химии. Закон сохранения массы веществ, закон сохранения и превращения энергии при химических реакциях. Скорость реакции, её зависимость от различных факторов. Обратимые реакции. Химическое равновесие. Факторы, влияющие химического равновесия. Принцип Шателье. состояние Электролитическая диссоциация. Сильные и слабые электролиты. Среда водных растворов веществ: кислая, нейтральная, щелочная. Понятие о водородном показателе (рН) раствора. Реакции ионного обмена. Гидролиз неорганических и органических веществ. Окислительно-восстановительные реакции. Понятие об электролизе расплавов и растворов солей. Применение электролиза.

Неметаллы. Положение неметаллов в Периодической системе химических элементов Д.И. Менделеева и особенности строения атомов. Физические свойства неметаллов. Аллотропия неметаллов (на примере кислорода, серы, фосфора и углерода). Химические свойства важнейших неметаллов (галогенов, серы, азота, фосфора, углерода и кремния) и их соединений (оксидов, кислородсодержащих кислот, водородных соединений). Применение важнейших неметаллов и их соединений. Федеральная рабочая программа | Химия. 10–11 классы (базовый уровень) 14 Металлы. Положение металлов в Периодической системе химических элементов Д.И. Менделеева. Особенности строения электронных оболочек атомов

Теоретические положения органической химии. Теория химического строения органических соединений А.М.Бутлерова. Изомерия и ее виды (структурная, геометрическая, положения кратной связи или функциональной группы).

Особенности строения атома углерода. Электронное облако и орбиталь, их формы: s,p. Электронное и электронно-графические формулы атома углерода в нормальном и возбужденном состояниях. Понятие о гибридизации атомных орбиталей, валентные состояния атома углерода (sp, sp2 и sp3). Валентность. Понятие первичного, вторичного, третичного и четвертичного атома углерода.

Электронное и пространственное строение молекул органических веществ на примере моделей молекул метана, этилена, ацетилена и бензола. Электронная природа химических связей в молекулах органических соединений. Разновидности химической связи: σ - и π -связи. Свойства химических связей в молекулах органических соединений: полярность, сопряжение, делокализация, ароматичность. Понятие о взаимном влиянии атомов на примере толуола, фенола, хлоруксусной кислоты. Способы разрыва связей. Промежуточные частицы (радикалы, катионы, анионы, их свойства.

Классификация органических соединений, органических реакций. Кислотноосновные и окислительно-восстановительные свойства органических соединений. Общие принципы номенклатуры органических соединений (тривиальная, радикальная, систематическая).

Основные органических классы соединений. Углеводороды. Классификация углеводородов. Предельные углеводороды (алканы). Гомологический ряд алканов. Закономерности изменения физических свойств в гомологическом ряду. Изомерия и номенклатура алканов. sp^3 -гибридизация. Тетраэдрическое строение молекулы, Природные источники. Получение, физические и химические свойства метана. Механизм реакции замещения. Циклоалканы. Особенности строения циклопропана и циклогексана.

Непредельные углеводороды (алкены, алкины). Гомологический ряд этилена. Изомерия и номенклатура алкенов. Этилен: электронная природа двойной связи, структурная формула, sp^2 -гибридизация, σ - и π -связи в молекуле этилена. Получение, физические и химические свойства этилена. Реакция полимеризации на примере получения полиэтилена. Диеновые углеводороды (диены). Бутадиен. Природный и синтетический каучуки.

Гомологический ряд ацетилена. Изомерия и номенклатура алкинов. Ацетилен. Электронная природа тройной связи, структурная формула, sp-гибридизация. Получение, физические и химические свойства ацетилена. Реакция Кучерова.

Ароматические углеводороды (арены). Гомологический ряд бензола. Бензол. Электронное строение молекулы бензола. Формула химического строения (современная, Кекуле). Получение, физические и химические свойства бензола. Толуол. Взаимное влияние атомов в молекуле толуола.

Галогенсодержащие соединения. Методы получения и свойства на примере метана, уксусной кислоты и др. соединений.

Нефть и основные продукты ее переработки. Природные газы и их использование.

Кислородсодержащие органические соединения. Спирты. Функциональная группа. Классификация спиртов. Атомность спиртов. Первичные, вторичные и третичные спирты: предельные, непредельные и ароматические спирты. Гомологический ряд предельных одноатомных спиртов. Номенклатура и изомерия. Этиловый спирт. Строение молекулы, способы получения, физические и химические свойства этилового спирта.

Многоатомные спирты: этиленгликоль и глицерин. Их строение, получение и свойства.

Фенол. Строение молекулы. Взаимное влияние атомов в молекуле фенола. Получение и свойства фенола.

Альдегиды и кетоны — функциональные изомеры. Гомологический ряд альдегидов. Изомерия и номенклатура альдегидов. Формальдегид и ацетальдегид. Строение молекул, получение, физические и химические свойства. Реакции поликонденсации. Получение феноло-формальдегидной смолы. Ацетон — простейший кетон. Получение и свойства ацетона. Карбоновые кислоты. Основность кислот. Предельные, непредельные и

ароматические карбоновые кислоты. Гомологический ряд предельных одноосновных кислот. Муравьиная и уксусная кислоты. Их строение, получение, физические и химические свойства. Высшие карбоновые кислоты — пальмитиновая, стеариновая, олеиновая.

Эфиры. Простые и сложные эфиры. Получение, физические и химические свойства. Реакции этерификации. Гидролиз сложных эфиров.

Азотсодержащие органические соединения. Нитросоединения. Функциональная группа. Нитробензол. Получение и свойства.

Амины. Функциональная группа. Классификация. Строение молекул. Получение и свойства аминов. Кислотно-основные и окислительновосстановительные свойства аминов. Анилин. Строение молекулы, получение и свойства. Реакция Зинина.

Аминокислоты. Функциональные группы. Гомологический ряд аминокислот. Альфа- и бета-аминокислоты. Понятие о биполярном ионе, пептидной связи. Образование пептидов. Получение и свойства аминокислот. Строение отдельных представителей аминокислот: глицина, аланина, цистеина, серина, глутаминовой кислоты, лизина, фенилаланина. Понятие о гетероциклических соединениях. Строение и химические свойства пиридина, пиррола, пиримидина и пурина. Строение пиримидиновых и пуриновых оснований: цитозина, урацила, тимина, аденина, гуанина.

Медико-биологическое значение основных классов органических соединений.

Важнейшие органические природные соединения.

Жиры. Получение и свойства жиров. Омыление жиров. Гидрогенизация жиров.

Углеводы. Функциональная группа. Классификация углеводов. Природные источники и способы получения. Особенности изомерии. Моносахариды: глюкоза, фруктоза, рибоза и дезоксирибоза. Их строение и химические свойства. Дисахариды: мальтоза и сахароза. Восстанавливающие и невосстанавливающие дисахариды. Сахароза. Гидролиз сахарозы. Полисахариды: крахмал и целлюлоза. Этерификация целлюлозы.

Белки — высокомолекулярные природные соединения. Строение, синтез и свойства белков. Понятие о первичной, вторичной и третичной структурах белков. Качественные реакции на белки.

Медико-биологическая роль природных соединений.

Высокомолекулярные соединения. Общие понятия химии высокомолекулярных соединений: мономер, полимер, элементарное звено, степень полимеризации. Реакции полимеризации и поликонденсации, как способы получения полимеров, - их сходство и различия.

Роль химии в обеспечении экологической, энергетической и пищевой безопасности, развитии медицины. Понятие о научных методах познания веществ и химических реакций. Представления об общих научных принципах промышленного получения важнейших веществ. Человек в мире веществ и материалов: важнейшие строительные материалы, конструкционные материалы, стекло, керамика, материалы краски, для наноматериалы, органические и минеральные удобрения. Химия и здоровье

человека: правила использования лекарственных препаратов, правила безопасного использования препаратов бытовой химии в повседневной жизни.

ТИПЫ РАСЧЕТНЫХ ЗАДАЧ

Расчеты, связанные с основными понятиями химии. Вычисление количества вещества по массе, объему газа при нормальных условиях, числу молекул (атомов, ионов) с использованием численных значений молярных масс, молярного объема, числа Авогадро.

Установление простейшей и молекулярной (истинной) формулы вещества по массовой доле элементов или результатам химического анализа.

Расчеты, связанные с основными газовыми законами. Вычисление объема газа известной массы или известного количества при нормальных условиях и условиях, отличающихся от нормальных. Вычисление относительных плотностей веществ в газообразном состоянии.

Расчеты при приготовлении растворов заданной концентрации. Вычисление массовой или объемной доли компонентов в долях единицы и в процентах; молярной концентрации; массы, объема (газообразного растворенного вещества), количества растворенного вещества; объема, массы раствора или растворителя.

Расчеты по уравнениям химических реакций. Вычисление массы, объема (для газов), количества вещества продукта реакции по известной массе, объему, количеству вещества реагента; с предварительным нахождением, какое из веществ вступает в реакцию полностью; с учетом выхода продукта реакции в процентах от теоретически возможного; с учетом массовой доли примесей в реагенте. Определение состава образующейся соли (кислая, основная, средняя или их смесь) по массам, объемам (газов), количествам веществ, вступающих в реакцию.

Определение состава двух-, трехкомпонентной смеси по массам, объемам (газов), количествам образующихся в ходе одной или нескольких реакций веществ.

Термохимические расчеты. Определение теплового эффекта реакции, теплоты образования и сгорания, массы, количества вещества реагентов.

ЛИТЕРАТУРА

- 1. Добротин Д.Ю. ЕГЭ ХИМИЯ. Национальное образование 2024
- 2. Габриелян О.С. Химия 10 класс. Дрофа, 2018
- 3. Доронькин В.Н. Химия 10-11 класс. Тематический тренинг. Ростов н/Д: Легион. 2024
- 4. Новошинский И.И. Химия. 10 класс. М.: Русское слово, 2020
- 5. Химия. Пособие-репетитор для поступающих в вузы. Под редакцией Егорова А.С. Ростов-на-Дону. Феникс. 2018